Thursday, May 13, 2021

Where are the non-computables
in the binary tree picture of the reals?


NOTE. Occasionally, over the years, I have published discussions of the binary tree picture of the reals. This post continues in that vein.
We accept the idea that the set of decimal extensions is bijective with the reals. For convenience, we convert to the base-2 number system, such that the reals are comprhended by the set of binary extensions.

To help us in our intuition, we employ a binary tree with a denumerable infinity of stages/levels. That is, at each level is a set of 2n nodes, or branching points. At level 1, there are 2 nodes...at level 10, 1024 nodes... Every left branch is designated 1 and every right branch 0.

Example: At level 3, we have,
  
  L R L R L R L R
  
  which is equivalent to
  
  1 0 1 0 1 0 1 0
  
  
The complete set of stages corresponds to the set of natural numbers N. The number of nodes in the "final" stage is taken to be 2o.

Hence, we see that every path is well-ordered. (But AC is needed to tell us those distinct paths reach the "bottom" stage.) Now we know from the Goedel and Turing theorems that the cardinality of the computables is ℵo, which is that of N.

It is also evident that every rational is represented as a finite digit string that recurs infinitely often. That is a set of all 0's means 0; a set of all 1's means 1; a finite string of 0's and 1's that is either followed by all 0's or that recurs infinitely often means some rational.

In addition, we have the set of computable irrationals. This means there exists at least one procedure that converts a numerical input into some 1's and-or 0's without ever doing so periodically and that this procedure is infinitely (or indefinitely) recursive, as in f(x) = xnext.

Now each path, up to any finite level, we must construe as a proto-number. All one can prove about any such path one follows is that if we know the algorithm, we can say whether the number is rational or irrational. And, if one does not know the algorithm, all one can say is that -- thus far -- the number is computable, as it can be defined stage by stage. In fact, at any finite level, the path has thus far been computed. So there is really no way to discern a noncomputable from the ordinary perspective.

But if we accept that the power set of N exists, in that case it must be that the "bottom line" point set of 2o "originates" the non-computables.

That could only mean, I suggest, that there must be many digit strings (from the "top" or "our" perspective) followed by an infinity of 0's that are then followed by a "finite" (from "bottom" perspective) string of 0's and 1's.

Such numbers are said to be undefined because their paths vanish as they climb skyward. Their paths all converge to the number 2. But they have vanished "before" coming into our finite range.

I concede such talk is inexact. Our language is unsuited for such conceptualization. Yet, I suggest, that intuitively we can discern that the "bottom up" paths must contain the non-computables, but that we cannot, from "top down" obtain them.

This picture does not suggest much beyond what is already known: that the continuum hypothesis is independent of the axioms of standard set theory.

A way to think about that is to note that the set of the computables K and its complement Kc comprise the reals. And R\K is equinumerous to R.

But we must use AC to "pick out" an arbitrary x ∈ Kc because there is no method in our posession for specifying any x. That is, if we define Kc by its elements, we say Kc is defined such that x is not definable. This is almost an abuse of the usual set notation {x|x ... }, which means that "any element x is defined..." So for Kc we have {x|x is undefinable}. That expression, to me, makes clear why CH is such an elusive beast.

Monday, May 10, 2021

Historical note on quantifiers

I have read in a few places that C.S. Peirce was the first to introduce quantifiers into logic.

Hence, I draw attention to the words of Augustus de Morgan in an appendix to his Formal Logic, or, The Calculus of Inference, necessary and probable published in 1847, before Peirce's time.
In 1842, there was published anonymously 'Outline of the Laws of Thought'; London and Oxford (Pickering, and Graham) octavo in twos (small). The author is the Rev. Wm. Thomson, tutor of Queen's College, Oxford. It is a very acute work, and learned. The system of propositions is extended by the introduction of both the common quantifications of the predicate into the affirmatives only, which introduces the propositions U and Y, as the author calls them, or "all Xs are all Ys" or "some Xs are all Ys."

Friday, May 7, 2021

Caution: Tractatus commentary
is in very, very rough form

It is nowhere near ready for dissemination. But, I believe in permitting anyone who likes to look over my shoulder and see what I am doing while my work is progressing, if it is.

That commentary is distinct from the essay An objection to proposition 1 of 'Tractatus,' which is complete, though flawed in its organization and presentation.

Right now the commentary is very clumpy, scattershot and not very good. At some future point -- who knows when? -- I hope to have put it into proper form. But, please peek if you are so inclined.

AC and the subset axiom

AC may be incorporated into the subset axiom. The subset axiom says that, assuming the use of "vacuous truth," any set X has a s...